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PREFACE 

Part of the Project RAND research program consists of 

basic supporting studies in mathematics.  This includes the 

study of combinatorial problems, with applications to 

communication networks, switching circuits, error-detecting 

and error-correcting codes, etc. 

A number of these combinatorial problems can be 

formulated in terms of matrices made up of columns of zeros 

and ones.  In the present Memorandum the authors continue 

the work of RM-2896-PR, Widths and Heights of (0, 1 Matrices. 

and RM-2897-PR, Multiplicities and Minimal Widths for (0. l)- 

Matrlces, now placing major emphasis on certain classes of 

incidence matrices that have special combinatorial significance 

for applications. 

The work of the coauthor. Dr. Ryser, was supported in 

part by the Office of Ordnance Research. 
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SUMMARY 

This paper continues the study of a—widths of (0, 1)- 

matrlces, the emphasis being on those special classes of b by 

v (0, 1)—matrices having k l's per row and r  l's per column. 

It Is assumed throughout that the class parameters b, v, k, r 

satisfy the Inequality (b-r)(v-k—l) < v — 1.  Such a class has 

special combinatorial Interest.  For example, complements of 

finite projectlve planes and of Stelner triple systems have 

parameters satisfying this Inequality. 

Several theorems are proved concerning the width sequence 

for a matrix In such a class.  Insofar as possible, these 

results are used to obtain information concerning the maximal 

width sequence for the class.  Perhaps the major general result 

established is that Jumps in the width sequence for a matrix 

in the class, or in the maximal width sequence for the class, 

are either 1 or 2. 

-> 
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V.'IDTH SEQUENCES FOR SPECIAL CLASSES OF (0, l)MATRICES 

INTRODUCTION 

The o-wldth €A(a) of a (0, l)-matrix A is the minimal 

number of columns that can be selected from A in such a way 

that all row sums of the resulting submatrix of A are at least 

a.  This notion was introduced in [2] and further studied in 

[3]«  In these papers the major emphasis was on the minimal 

a-width sequence for the class ?l of (0, l)--matrices generated 

from an arbitrary A by interchanges : 

(1.1)    T(a) --.    min  ea(a). 
r A in ?l A 

The ?l in (1.1) can also be viewed as the class of all (0, l)- 

matrices having the same row and column sums as A.  A formula 

for 6(a), in terms of the given row and column sums that 

characterize ?l , was obtained in [2].  It was further shown 

in [3]   that there is a single, easily constructed matrix T in 

?l that has minimal a—width for all a. 

The present paper continues the study of a-width, but 

with a shift in emphasis.  Here we shall be mainly concerned 

with obtaining further information regarding the width sequence 

€
B(
a) for a fixed matrix B of size b by v, having k I's per 

row and r I's per column, whose class parameters b, v, k, r 

satisfy the inequality 

(1.2)     (b - r)(v - k - 1) < v - 1. 

Insofar as possible, we relate this information to the maximal 
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width sequence 

(1.3)        e(a)  =   maX   e-R(a) 
B in * B 

for the class ^ generated by B.  A class * with parameters 

satisfying (1.2) has special combinatorial interest.  For 

example, taking 

2 2 
b = v = n + n + 1, k = r = n 

gives such a ^ ; it contains complements of finite projective 

planes of order n. when these exist.  For another example, take 

v ^ 1, 5 mod 6, b = ^pi-l k = v - 3, r = Ü^fcH 

to obtain a class ^ that contains complements of Steiner 

triple systems on v elements. 

The determination of the maximal width sequence (l.j) for 

such a class ^ involves deep issues.  For instance, in the 

first example mentioned, e(l) = 2 or 3 according as a finite 

projective plane of order n does not or does exist [6].  Spe- 

cifically, the complement of a finite plane has 1-width 3. 

whereas other matrices in the class have 1-width 2.  This state 

of affairs is of course decidedly in contrast with the situation 

for the minimal width sequence (l.l) for ^ .  Indeed, 

(1.4)  = ~(a) = min  € (a) = /^V 
B in ^ D      \r / 

Here (x) denotes the smallest integer > x.  The formula (1.4) 
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uses only the fact that matrices in ^ have constant row and 

column sums [2 1. 

Our main result concerning the width sequence for an 

arbitrary E in ^ is presented in Sec. 3 (Theorem 3.2).  We 

call it the 2—jump theorem:  It asserts that 

eB(a+l) - eB(a) = 1 or 2. 

This narrows the problem of determining the width sequence for 

E to that of determining eB(l) and the location of the 2~Jumps.' 

The 2-Jump theorem also holds for the maximal width sequence 

?(a) for ^ (Corollary 3-3).. although, in contrast with T(a) .. 

it is not true that a single matrix always produces the sequence 

e(a). 

In Sec. 4 we investigate the manner in which an interchange 

applied to E may affect its width sequence.  If E has a 1-jump 

at ot+l. then an interchange may increase the (a+l)—width by 1, 

whereupon the new matrix has a 2—jump at a+l; if, on the other 

hand, E has a 2—jump at a+l, an Interchange may decrease the 

(a+l)—width by 1, whereupon the new matrix has a 1—Jump at a+l. 

No other changes are possible at a+l (Theorem 4.1).  The proofs 

of both the 2—Jump theorem and the interchange theorem rely 

ultimately on the impossibility of certain configurations In 

the class ^ . 

In Sec. 5 the interchange theorem of Sec. 4 Is applied to 

establish the existence in ^ of a matrix with a- and (a+l)— 

widths satisfying the necessary conditions 
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(1) ~{a)  <  6(a) < ¥(a), 

(il) T(a+1) < e{a+l) < ?(a+l), 

(lii)  1 < €(a+l) - 6(a) < 2. 

In other words, If Integers t(a) and €(a+l) are specified 

satisfying these three conditions, there is a B in 4* with a- 

and (a+l)-widths e(a) and €(a+l), respectively-  Examples show 

this to be a best—possible result. 

Some facts concerning widths and complementation are 

recorded in Sec. 6.  The width sequence for a matrix A having 

constant row sums determines the width sequence for its com- 

plement A1.  Indeed,, the sequences eÄ(o) -a and €.,(0') -a' 

are conjugate partitions (Theorem 6.1), and so are the class 

sequences T^ (a) - a, T^ (a1) - a', and 1^  (a) - a, e^, (a') - a' 

(Theorem 6.2).  This section is also the natural place to point 

out the close connection between a certain width problem and 

the existence of ovals in a finite projective plane :  Finding 

the second 2-jump in the width sequence for the complement of 

a plane is tantamount to determining the maximal number of 

points in the plane having the property that no three are 

collinear. 

The width sequence for the complement of a Steiner triple 

system is studied in Sec. 7.     Going back to the triples, this 

problem becomes simply that of determining the 1-width of a 

Steiner triple system.  It is shown that a lower bound for the 

1-width of a triple system on v elements is (v—l)/2, and con- 

ditions are determined under which this bound is achieved 
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(Theorem 7.1).  For Instance, if v = 15 there is a triple 

system having 1-width (v-l)/2 = 7.  But there is also a triple 

system on 15 elements that has the surprisingly large l-width 9. 

The concluding Sec. 8 collects some miscellaneous examples 

and remarks.  We mention one.  Examples are constructed of 

classes ^ having the property that all 2-juip.ps in the maximal 

width sequence occur before the first 2-Jump in the minimal 

width sequence.  Thus the difference between ?(a) and l^a) for 

classes under consideration can be as large as possible on 

trivial grounds. 

2.  THE CLASS ^ 

Let ^ denote the class of all b by v (0, ij-rr.atrices 

having exactly k l's in each row and r 1's in each column. 

Here k and r are positive integers and 

(2.1) bk = vr. 

Vie further assume throughout the body of the paper that the 

parameters b, v, k, r satisfy the inequality 

(2.2) (b-r)(v-k-l) < v - 1. 

Superficially, the inequality (2.2) indicates that matrices in 

^ have a high density of l's.  More precisely, (2.2) asserts 

that if one passes to the complementary class ^ ' by replacing 

l's by O's and O's by l's. and computes the average value X 

for inner products of distinct columns of a matrix B' in W , 

then 
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(2.3)    X = (b-r)(v-k~l) 1 , 

The main significance of the class ^ , or its ccnplement 

^,, derives from the consideration of certain combinatorial 

configurations.  A balanced incomplete block design is an 

arrangement of v elements into b sets in such a way that: 

D(l)  Each set contains exactly :•: distinct elements. 

D(2)  Each element occurs in exactly r sets. 

D(3)  Each pair of distinct elements occurs in exactly 

A sets (0  X < r ' b). 

The parameters b, v, k, r, A must then satisfy 

(2.4) bk = vr, 

(2.5) r(k-l) =A(v-l)J 

(2.6) b > v  (Fisher inequality).* 

A block design may of course be represented by a b by v inci- 

dence matrix 

(2.7) B - (b^), 

where b. . = 1 if the J—th element is in the i-th set and 

b.  =0 otherwise.  Henceforth, when we speak of designs, we 

have this representation in mind. 

*This inequality need not hold for a class satisfying (2.2') 
Indeed, if b > v, then (2.2) Implies (v-k)(b-r-l) < b - 1, and 
hence the transposed class also satisfies our basic assumption. 
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The complement of a block design with parameters 

(2.8) b, v, k, r, A 

is a clock design with parameters* 

(2.9) b, v, k' = v - k,  r' = b - r,  A' = A + b - 2r. 

If equality holds in (2.3), the class l3' contains block 

designs with A' = 1, provided these exist for the specified 

parameter values of W,   and if this is the case the clüss ^ 

contains designs with  A = 1 - (b-2r). 

For b = v, k = r, the design is s^.Tnmetric (or a v, k, A 

configuration).  Finite pro.lective clones -^re symmetric designs 

with parameters 

(2.10) v = n2 + n + 1,  k' = n + 1,  A1 = 1   (n > 2), 

and complementary parameters 

(2.11) v = n + n + 1,  k = n ,  A^n - n. 

Steiner triple systems are designs with parameters 

(2.12) b = li^D,   v s 1, 3 mod 6, k> = 3, r' = ^i. A' = 1  (v>7), 

and complementary parameters 

*The trivial designs with k = v - 1 are exceptional in 
the sense that complementation gives k' =1 and A1 = 0. 

**The only exceptional case is b = v = 3 and r' = k' =2. 
for which 3* has A = 0. 

***The case v = 3 is included for Steiner triples and 
excluded for designs.  This discrepancy is in all events trivial, 
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(2.13)   b, v, k = v-5, r^XzL^),  ^(vz^vdL). 

Both (2.11) and (2.13) satisfy (2.2) with equality.  For the 

parameters (2.12), Steiner triple systems always exist.  The 

precise range of n in (2.10) for which planes exist is an open 

question, but the Bruck-Ryser nonexistence theorem excludes 

infinitely many values of n [1]. 

There is a close connection between the existence of a 

design in ^, (or in ^ ) and the maximal 1—width of the class 

V
>A .  We state this as follows : 

Theorem 2.1.  The class ^, contains a block design if and 

only if the maximal 1—width of ^ is 3. 

The proof is almost immediate.  Let B' in ^l be a design. 

Then every pair of columns of B' has inner product 1, so that 

every pair of columns of the complementary design B has a row 

composed of O's.  It follows that ^(l) = 3-  On the other 

hand, if B' is not a design, then B' has a pair of columns with 

inner product 0, by virtue of (2.3), and hence B has a pair of 

columns containing at least one 1 per row.  Thus e-o(l) £  2. 

Although this connection between designs and widths is 

close to the surface. Theorem 2.1 provides motivation for 

studying widths in the class V-B .  There are other connections, 

and other motivations, also. 

As the proof of Theorem 2.1 shows, the complement of a 

finite plane has maximal 1—width.  The plane itself, however, 

has minimal 1—width for its class. 
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Theorem 2.2.  A v, k, X configuration has (minimal) 

A-width k. 

Proof.  In a v, k, X configuration, the inner product of 

each pair of rows is also equal to A.  Thus, singling out those 

columns corresponding to the I's in some row, we see that the 

design has A-width at most k.  On the other hand, the formula 

(1.4) shows that the minimal A-width for the class is given by 

-M-m-mm)-*- 
It should perhaps be pointed out here that a statement 

about widths for a matrix B in ^ can be translated to one 

involving widths of B' in 3<'.  This will be made clear in 

Sec. 6.  But notice, for example, that the content of Theorem 

2.1 might also be phrased as follows:  The (kl-l)-width of a 

design in ^, is v - 1, whereas the (k,-l)-width of other 

matrices in ^' is at most v - 2. 

We have chosen, perhaps somewhat arbitrarily, to focus 

primary attention on widths in ^ rather than ^ '. 

3-  THE 2-JUMP THEOREM 

Excluding from consideration the trivial class * for 

which b = r, v = k, so that ^ would consist of the single 

matrix J having all its entries 1, we have seen that for any 

B in ^ , 
© 

(3.1) ^(1) = 2 or 3. 



RM-2898 
10 

In this section we obtain certain information on higher a—widths 

for matrices in ^. 

We first state and prove a theorem concerning the l—width 

of a general (0, l)-matrlx A.  This theorem provides a crude 

upper bound on 1—width that is sufficient for our purposes in 

this and the following section. 

Theorem 3.1.     Let A be_ an m b^; n (0, l)-fnatrlx having 

1-width at least e, and let a  denote the number of zeros in an 

arbitrary column of A.  Let A  be_ extended to an m by t 

(0, l)-matrix A*, all of whose row sums equal ß.  Then 

(3.2)   {*-¥)°>-{n)- 

Proof.  By permutations of the rows and the first n 

columns of A*, we may take A* ^.n the form 

A* 

0 

• 
0 

X 

1 • • • 
1 

* * 

Here the first column of A* has a O's In the initial positions 

and m — a I's in the remaining positions.  The submatrix V.T is 

of size o by n — 1.  Now 

^ 

counts the sequences of e — 2 O's formed from the rows of the 
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matrix [W, X].  This number is greater than or equal to the 

number of such sequences formed from W.  But A has 1—width at 

least e.  Hence c — 1 columns of A must contain a row of 

e — 1 O's.  This implies that the number of sequences of £ - 2 

O's in the rows of W is greater than or equal to 

m. 
Theorem ^.2.  For any B in ^, 

(3.3) eB(a+l) - €B(a) = 1 or 2, a = 1, 2, ..., k - 1. 

Proof.  For any (0, l)-matrix A, one has eA(a+l) - 6A(a) > 1, 

Hence to prove (3.5) for matrices in **, we assume a B in ^ 

with 

(3.4) eB(a+l) - eB(a) > 3 

for some a., and obtain a contradiction. 

We may take B in the form 

(5.5)       B 

Here W is of size e by t = e-R(a) and has row sums at least 

a + 1.  The matrix Y, termed a critical a-submatrix of B in [2], 

is of size e1 = b — e by t and has row sums equal to a.  Note 

that e' > 0, by the minimal property of a-width.  The matrix Z 

is of size e" by t' = v — t and has row sums equal to a' = k — a. 

The 1-^width of Z ist greater than or equal to 3f for otherwise 

w X 
_Y z 
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(5-^) would be violated.  Let z denote the number of I's in 

sone column of Z.  Then by Theorem 3'1 we have 

(t'-l-a'He'-z) > t' ~ 1, 

or 

(5.6)    r — z>r — e' + 
©  t'—1-a' 

o 

Next we assert that 

(3.7) t'~1 > t - r. 
t'-l-a1 

This Is equivalent to 

(3.8) t' - 1 > (b-r)(t'-l-a'). 

To prove (3.8), we first note that the configuration (3-5) 

implies 

(a+l)e -! ae ' ' rt, 

whence 

ab -r e < rt 

and 

(k-a1 )h  -.- e  <   (v-t')r, 

But bk = vr, so that 

rt' 
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Hence to prove (5.3) it suffices to prove the sharper inequal- 

lty_ 

(3-9)    b(t'-l) > (b-r)(t,(b-r) -b). 

This reduces to 

b(b-r-l) > t'Ub-r)2 - b), 
— 

and thus to 

,2 vr (b-r-1) > kt,((b-r)  - b) 

VJe know that t' " v.  Hence to prove (5'9) it suffices to 

prove 

r(b-r-l) > k((b-r)2 - b). 

This reduces to 

bk - r > (b-r)(k(b-r) - r) 

or 

vr — r > (b—r)(vr—kr—r). 

But this gives 

(3.10)   v - 1 > (b-r)(v-k-l), 

which is our assumption (2.2) on the parameters of ^ 

Hence (3.?) is valid. 

But now (3-6) implies 
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r— z>r — e' + b — r. 

Hence 

(5.11) r - z > e + 1. 
® 

But r - z Is the number of I's In a column of X In the configu- 

ration (5«5), and thus (3-11) is a contradiction.  This proves 

Theorem 3.2. 

Let B be an arbitrary matrix in ^ .  We say that B has a 

1-Jump at a + 1 if 

(5.12) £3(0+1) - eB(a) =1,  a = 1, 2, .... k - 1, 

and a 2-jump at a + 1 if 

(5.13) eB(ct+l) - eB(a) =2,     a = 1, 2, • • • , k - 1. 

It is a convenient technicality to extend this terminology by 

saying that B has a l-jump at 1 If eB(l) = 2 and a 2-Jurap at 1 

if e (1) = 3.   With this convention, an a—width sequence for 

B, namely 

(3.14)   £3(1), €B(2), •••, €B(k) 

contains precisely v-k-1 = k' -1 2-jumps.  The problem of 

determining (3-14) is that of finding the location of these 

2-Jumps. 

Even though this is inconsistent with the natural 
definition eA(0) = 0. 
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It is easy to see from Theorem 3«2 that both the minimal 

v.'idth sequence 'e'(a) and the maximal width sequence e"(a) for ^ 

have Jumps at most 2.  Of course we know this directly forgot), 

since there is always a single matrix A in an arbitrary class ?i 

having all its a-wldths minimal [3], but there is no need to 

Invoke this fact. 

Corollary 3.3.  For the class ^, 

(3.15) T(a+1) -T(a) = 1 or 2, a = 1, 2, •••, k - 1, 

(3.16) e(a+l) - e(a) = 1 or 2, a - 1, 2, •••, k - 1. 

We give a proof for (3.16).  It suffices to contradict 

€(a+l) - 7(a) > 3.  Thus, suppose 

?(a) = £B (a) = t, 

?(a+l) = £  (a+1) > t + 3, B2 

for matrices B-,, Eg in * and for some a.  By Theorem 3.2, we 

must have 

e  (a) > t + 1, B2 

contradicting the maximallty of e^a) = t. 

In view of Corollary 3-35 we may apply the 1-jump, 2-tjump 
e 

terminology to both class sequences 

(3.17) T(l), e(2).. •••, 7(k), 

(3.18) 7(1), e(2), ••-, T(k). 
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Each of these has v — k — 1 2—jumps, 5nd v,re say that the class 

^ has v - k - 1 2—Jumps. The 2—Jumps of (5.17) can be deter- 

mined fron the formula 

cto 
(5.19)   ~(a) =<^i). 

Roughly speaking, they are evenly spaced.  But determining the 

2-Jumps in (5.l8) involves intricate combinatorial properties 

of the class, as is apparent from Theorem 2.1. 

We conclude this section with an example of a class ^ and 

the width sequences for certain matrices in ^ .  Let 

b = v = 13 (= 52 + 5 -t- l), k - r = 9 (= 52), 

i 

so  that   ^ '   contains   the  plane  B1     of order  5.     Table   1  shows 

the   width  sequences   for  the  matrices  B,   B-^   and 

B. 

110     0     0     0 

110000 

0 0 110     0 

0 0 110     0 

0 0 0     0     11 

0 0 0     0     11 

1110000 

10 0 110 0 

10 0 0 0 11 

0 10 10 10 

0 10 0 10 1 

0 0 110 0 1 

0     0     10     110 
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The natrlx Bo was constructed by 0.Gross to show that suc- 

cessive 2—jumps are possible. Note that B2 has a plane of 

order 2 in the lower right-hand corner. This helps in the 

calculation of the width sequence for Bp. 

Table 1 

WIDTH SEQUENCES FOR THE MATRICES B, B1 AND B2 

a 

'B- 

1       2 3 4 567 8      9 

2       3 © 6 ®    9   ® 12     13 

©    ^ © 7 8      9   @ 12     13 

2     © 5 6 (8)@   11 12     13 

It is clear from Table 1 that the maximal width sequence 

for this class cannot be produced by a single matrix.  This 

is not exceptional, but is rather the typical situation. 

4.  THE EFFECT OF AN INTERCHANGE ON WIDTHS 

An interchange is a transformation of the elements of a 

(0, l)-matrix that changes a minor of type (a) below into one 

of type (b), or vice versa, and leaves all other elements 

fixed: 

(a) 
1  0 

0  1 (b) 
0 1 

1 0 

Given two matrices A, and A,, in the class ?l of all 

(0, l)-matrices having specified row and column sums, one can 

pass from A1 to Ag by a finite sequence of interchanges [5]. 
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In other words, a matrix A in ?l generates the entire class by 

interchanges.  'We also recall that an interchange can alter 

the a-width of a matrix by at most 1 [21. 

Theorem 4.1, below, outlines the possible effects of a 

single interchange on the width sequence for a matrix in * . 

The theorem says, in short, that it may be possible to lower 

a 2—Jump to a 1—Jump, or, inversely, raise a 1-Jump to a 

2-Jump, but that it is impossible to raise a 2-jump or lower 

a 1—Jump.  More precisely: 

Theorem 4.1.  Let B be a matrix in  ^ , and suppose 

that B has a 1-Jump at a + 1.  If an interchange applied to B 

increases its (a+l)—width b^r 1, then the transformed matrix 

has a 2-Jump at_ a + 1 =  Suppose that B has a 2-Jump at a + 1. 

If an interchange applied to B decreases its (CH-1)-width by 1, 

then the transformed matrix has a 1—Jump crt a + I.  These are 

the only ways an interchange can change widths at a + 1. 

Proof.  Let B have a 1—Jump at a + 1.  Suppose that an 

interchange applied to B yields a matrix B* having (a+l)-width 

^«(a+1) = £B(a-fl-) + 1 = €B(a) + 2. 

By the 2—Jump theorem, we then have either 

eB*(
a) = e

B(
a)  or  £

B*(
a) = €B^a^ + 1* 

But if the latter alternative holds, we should have 

^(a) = eB(a+l), 
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and this contradicts the minimal property of a-width for the 

matrix B*.  To see this, note that the matrix B can be written 

in the form 

(4.1) B = 
'w *■ 

.Y * 

where Y is a critical (a-fl)-submatrix.  That is, Y has 

€^(0+1) columns and has row sums equal to a + 1.  The matrix 

W, if present, has row sums > a + 1.  If the interchange 

raises the (a+l)-wldth of B, it is essential that a  1  In 

some column of Y be replaced by a  0  In the interchange. 

If, after the interchange, this column of the matrix 

is ignored, the remaining columns have row sums > a.  Thus 

e
B*(

a) <   eB(a+l), and hence B* has a 2-Jump at a + 1. 

Let B have a 1-Jump at a + 1.  One interchange applied to 

B cannot yield a matrix B* having (a+l)-width e_.(a+l) -1. 

Indeed, if this were the case, we would have e ^(a) = ^(oO - 1/ 

and the inverse interchange contradicts the previous assertion. 

Let B have a 2—jump at a + 1.  We now prove that one 

Interchange applied to B cannot yield a transformed matrix B* 

having (a+l)-width eB(a+l) +1.  If it could, then by the 

2-jump theorem, the matrix B* has a-width e^fa) + 1.  Now the 

matrix B can be written in the form 
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(4.2) ■R . 

wl 
* 

_Y1 * 

where Y^ is a critical a-submatrlx.  Thus Y, has row sums a 

and has eB(a) = t columns, and \-l.,   if present, has row sums 

> a.   If, after the interchange, the a-width of B has been 

raised to t + 1, it is essential that the interchange replace 

a 1 In Y1 with a 0.  Then B* can be written as 

(4.3) I* _ 
'w X *■ 

.Y Z z*. 

Here Y has size e' by t, and each row of Y has sum a, except 

the last, which has sum a - 1.  W is of size e = b - e1 by t, 

with all row sums at least a + 1.  Note that e > 0, so that W 

is present.  Let a + a' = k.  Z is of size e' by a' + 1.  The 

last row of Z consists entirely of I's and the 1-width of Z 

Is > 3, since the (a+l)-width of B* is t + 3.  Let z be a 

column sum of Z and let t + t' = v.  Then by an application of 

Theorem 3.1 to the first e' - 1 rows of the matrix [Z, Z*], we 

obtain 

(4.4) (t'-l-a'He '-z) > a' 

Hence 

(4.5) r— z>r— e' + a 

t'-l-a' 

We assert that 
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or equivalently, 

(4.7) a' > (b-r-lHt'-l-a1). 

Since the configuration (4.5) implies a' > rt'/b, to prove (4.7) 

it suffices to establish the sharper inequality 

(4.8) rf > (b-r-l)(tl(b-r) - b). 

This reduces to 

(4.9) b(b-r-l) ■ t,((b-r)2 - b). 

an inequality that was shown to be valid in the proof of 

Theorem 3.2.  Hence (4.6) holds, and (4.5) then implies 

(4.10) r-z>r-e, +b-r-l=e-l. 

Thus 

(4.11) r - z > e. 

But then, in the configuration (4.3), X must be a matrix of 

I's.  Thus, looking at a row sum of [W, X], we have 

(4.12) a + 1 + a' + 1 < k, 

and this is a contradiction. 

Finally, let B have a 2-jump at a + 1, and suppose that 

one interchange applied to B yields a transformed matrix B* 

with 
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eBJa+l)   -  €B(a-fl)  - l  =  ^(a)   +  1. 

Then either 

€B»(a)  -  €
B(a)   or €B*(a^  *   €B^a^  ~ 1' 

We novi  know, however, that the latter alternative is-impossible 

since the inverse interchange would contradict what we have 

just proved.  Thus B* has a l—Jump at a + 1. 

This completes the proof of Theorem 4.1. 

It should perhaps be remarked that both of the possibili- 

ties outlined in Theorem 4.1 can actually occur, in view of 

the fact that one can pass through a class by interchanges. 

Note also that our 1—jump, 2-Jump terminology for a + 1 = 1 

is consistent with Theorem 4.1. 

In the next section we give an application of Theorem 4.1. 

5-  AN EXISTENCE THEOREM 

It was observed in [2] that for an arbitrary class % ,   if 

e(a) is an integer in the interval T(a) < e(a) < ^(a), then there 

is an A in :?l having a—width e(a).  This follows from the facts: 

(i) an interchange can change an a—width by at most 1, (ii) 

one can pass through the class ?l by interchanges.  For the 

class ^ , the interchange theorem of Sec. 4 yields a stronger 

result: 

Theorem 5.1.  For the class v><, let e(a) and e(a+l) be 

integers satisfying 

(5.1)    T(a) £ 6(a) < J  (a). 
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(5.2)    r(a+l) < e(a+l) < €(a+l), 

(5-3)    1 1 €(a+l) - e(o) < 2, 

for some a = 1, 2, • • •, k - 1.  Then there is a B In v3 having 

q-width e(a) and (a+l)-wldth e(a+l). 

Proof.  We first prove the theorem with (5-2) replaced by 

(5.4) ~(a+l) - e(a+l) " €(a+l). 

Suppose that 

(5.5) e(a+l) = e(a) + 1 

for all B in ^ of (a-rl)-width e(a+l).  Then by Theorem 4.1, 

B is not transformable by interchanges into a matrix of (a+l)- 

wldth TCa+l), a contradiction. 

Suppose that 

(5-6)    e(a+l) = e(a) + 2 

for all B in ^ of (a+l)-width e(a+l).  Again by Theorem 4.1, 

B is not transformable by interchanges into a matrix of 

(a+l)—width iXa+l), a contradiction. 

This proves the theorem with (5-2) replaced by (S.^)- 

Four cases remain: 

(5.7) e(a+l) =',e(a+l), ~(a+l) = 7(a) + 1, 

(5.8) €(a+l) =T(a+l), 7(0+1) =7(a) +2, 
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(5.9) e(a+l) = ?(a+l), 7(a+l) = ?(a) + l, 

(5.10) e(a+l) = 1(0+1), ?(a+l) = ?(a) + 2. 

If (5-7) holds, we must show the existence of a B in ^ 

with (a+l)-width'e(a+l) and a-width ^a).  In this case, 

every B of (a+l)-width ~(a+l) has a-widthT(a). 

If (5-8) holds, we must show the existence of a B in ^ 

of (a^l)-width T(a-l) and a-width ~(a). and, in case 'e(a) < ?(a), 

of a B in ^ of (a+l)-width T(a+l) and a-width T(a) + 1.  The 

first of these is immediate, since every matrix of a-width 

T(a) has (a+l)-wldth ~(a+l) if (5.8) holds.  For the second, 

consider a B of a-width ~(a) + l.  if B has (a+l)-wldth 

e(a-fl), we are done.  Suppose, then, that all such B have 

(a+l)-width e(a+l) + 1, and consequently have 2-jumps at a + 1. 

But by Theorem 4.1 and the remarks preceding the theorem, 

there is an interchange transforming some such B into a matrix 

of (a+l)-width "e(a+l), whereupon the transformed matrix has a 

1-Jump at a+l.  Kence there is a B of a-wldth 7(a) + 1 and 

(a-t-l)-width "eta+l). 

If (5.9) holds, we must show the existence of a B in ^ 

of (a+l)-width 1(0+1) and a-^idth e(a), and in case ^a) < I (a), 

of a B in ^ of (a+l)-width e(a+l) and a-width 7(a) - 1,  The 

first of these is immediate because in this case every matrix 

of a-width e(a) has (a+l)-wldth e(a+l).  Consider a B of 

a-width 7(a) - 1.  If this B has (a+l)-^idth 7(a+l), then the 

theorem holds for (5-9).  Suppose, then, every B of a-width 

e(a) - 1 has (a+l)-width 7(a+l) - 1.  Now there exists an 
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interchange that transforms some B of (a+l)—width ¥(a+l) -1 

into a B of (oN-l)~width €(a+l).  Then, by Theorem 4.1, there 

exists a B of (a+l)-width ?(a+l) and a-width ¥(a) - 1. 

If (5.10) holds, vie  must shov; that there is a B in ^ of 

(a+l)-width ?(a+l) = ?(a) + 2 and a-width €(a).  In this case, 

every B of (a+l)-width 7(a+l) has a-width "^(a). 

This completes the proof of Theorem 5.1. 

It can be shown by examples that Theorem 5.1 is a best- 

possible result in the sense that there are classes ^ for 

which one can specify three integers e(a), e(a+l), e(a+2) 

satisfying the obvious necessary conditions, but there is no 

matrix in the class having these as its a~,   (a+l)—, and (a+2)— 

widths, respectively.  For instance, the complement of the 

(unique) plane of order 3 has 1-width 2, 2-wldth k,  3-wldth 6, while 

~(l) = 2, ~(2) - 5, T(3) = 5 for its class.  But there is no 

matrix in this class having 1-width 3, 2-width k,   and >-wldth 5. 

6.  WIDTHS AND COMPLEMENTS 

Let A be an arbitrary b by v (0, l)-matrlx, and, for the 

moment, designate its largest row sum by k.  Define 

(6.1)    uA(ß).-     ß = 0, 1, K, 

to be the maximal number of columns that can be selected from 

A in such a way that the resulting submatrlx has row sums at 

most ß.  It was shown in [J>]   that the sequence (6.1) and the 

width sequence for the complement A1 of A, 
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(6.2) eA,(a),   0=0, 1, ••-, v - k, 

determine each other In the following way.  Let a be fixed in 

its interval and let ß be the least integer in its interval 

for which 

(6.3) uA(ß) - ß > a. 

Then, denoting this least ß by ß(a), we have 

(6.4) eA,(a) = a + ß(a). 

On the other hand, starting with the sequence (6.2) and 

fixing ß, let a = a(ß) be the largest integer in its interval 

for which 

(6.5) €A'^ - a 1 ß- 

Then 

(6.6) ^(ß) = a(ß) + ß. 

Here we take €A,(0) - 0 and, if A has no zero columns, 

UA(0) = 0. 

If the matrix A has constant row sums k, it is clear that 

(6.7) v - nA(ß) = eA(k-ß). 

Hence, for constant row sums, the width sequence for a matrix 

A determines the width sequence for A'.  We summarize the 

relationship between these sequences as follows: 

Theorem 6.1.  I^t A be a b by v (0, l) matrix having 
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constant row sums k, let A1 be^ its complement with row sums 

k' = v - k, and let €A(cx) be^ the width sequence for A.  Let 

^ *>£ SL flxed Integer in the Interval 0 < a' £ k', and let 

a(a•) be the largest integer a in the interval 0 < a < k 

satisfying 

(6.8) eA(a) - a < k» - a
1. 

Then 

(6.9) £A^a^ ~ a, = k ~ a(a')- 

Hence the sequences G.(a) — a and €.,(0') - a1 are conjugate 

partitions. 

Proof.  By (6.4), ^.(a') -a' is the least integer ß in 

the interval 0 < ß < k such that 

HA(ß) - ß > a>. 

By (6.7I, this is the least integer ß such that 

v - eA(k-ß) _ ß > a'. 

Setting a = k - ß establishes (6.9). 

It follows that the nondecreasing sequences 

(6.10) eA(a) - a,   a = 1, 2, ••., k, 

(6.11) ^.(a') -a',  a' = 1, 2, •••, k', 

are conjugate partitions of the integer 
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a=l 
(eA(a) - a) 

k 
Z     (e  (a-) - a-) 
•=1 R 

To see this, construct a k bj»- k' (0, l)—array in v;hich row a 

contains ^.(a) - a I's occupying the last ^.(a) — a positions 

(see Fig. 1).  Then column a* of this array contains 

€.,(0') —a"  I's; that is, the sequences (6.10) and (6.11) 

are conjugate. 

■as 4 5 

k = 

1 

2 

5 

6 

7 

0 0 0 0 1 

0 0 0 1 1 

0 0 0 1 

0 0 0 1 1 

0 1 1 1 1 

0 1 1 1 1 

0 1 1 1 1 

Fig. 

Notice also that row a of the array contains 

u,A(k-a) — (k-a) zeros, while column a' contains 

ix. , (k'-a') — (k'-a1) zeros, and thus the nondecreasing 

sequences 

(6.12)    ^(ß) - ß; ß = 0, 1, •••, k - 1, 

(6.15)   ^.(ß') - ß'. ß' = 0, 1, •••, k- - 1 

are conjugate partitions of the integer 

k-1 k'-l 
(u (ß) - ß) =  i (UA.CP') - ß') 

ß=0 A ß=0 H 
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Now let ?l be the class of b by v (0, l)-matrices having 

constant row sums k and specified column sums.  Since there is 

a single matrix "ä in ^l having minimal width T(a) for all a, 

it follows from Theorem 6.1 that the complementary matrix TL1 

yields the minimal width sequence for ?i ', the sequences 

T(a) - a for Ji and -(a«) - a' for ?i • being conjugate.  The 

same connection also holds between the maximal width sequences 

for the two complementary classes. 

Theorem 6.2.  Let ?l be the class of all b b^r v 

(0, 1/-matrices having constant row sums k and specified 

column sums,   and let ^ ' be the_ complementary class with row 

sums k' = v - k.  Then the sequences 

(6.14) e^ia)  -a. a = 1, 2, •••, k, 

(6.15) ? (a1) -a', a' = 1, 2,   •••. k'. 

are conjugate. 

Proof.  Suppose (6.14) is given, and let a' be fixed but 

arbitrary in its interval.  Determine the largest integer a 

such that 

?4i(a) - a < k' - a1. 

Hence for this a, we have 

(6.16) ^(a) - a < k' - a' < I^a+l) - (a+l). 

Select a matrix A In ?l having maximal (a+l)-wldth.  Then (6.16) 

Implies 
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(6.17) €A(a) - a < k' - a'  < eA(a+l)  - (a+1), 

and hence,   by Theorem 6.1, 

(6.18) eAI(a1) - a'   = k - a. 

Thus the conjugate of (6.14) is dominated by (6.15). 

Interchanging the roles of (6.14) and (6,15) in the 

argument shows that the conjugate of (6.15) is dominated by 

(6.14).  But this implies that the conjugate of (6.14) 

dominates (6.15).  Hence (6.14) and (6.15) are conjugate. 

Returning now to the class ^, we have, from the 2—Jump 

theorem, 

(6.19) eB(a+l) - (a+i) - (eB(a) - a) = 0 or 1, 

a=l, 2, •••,k-l, 

for B in ^ .  Using the conjugate relation between the 

sequences eB(a) -a and e  (a1) -a1, it follows from (6.19) 

that 

eB1(a»+l) - (a'+l) -^.(a-) - a') > 1, a' = 0, 1, •••, k1- 2 

and hence that 

(6.20) ^.(a'+l) - eB,(a') > 2,  a' = 0, 1, •••, k' - 2. 

That Is, the 2—Jump theorem for ^ implies that Jumps In the 

width sequence for a matrix In the complementary class are at 

least 2, except possibly for the last Jump.  The inequality 

(6.20) Is valid for a' = k1 - 1 unless B1 is a design. In which 

case the left-hand side of (6.20) Is 1. 

The connection between the width sequence for the comple— 
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ment of a projective plane and the existence of ovals In the 

plane should be mentioned.  Let B1 be a plane of order n.  A 

set of n + 1 points of B' is an oval if no three are collinear. 

In the notation (6.1), B' has an oval if and only if* 

u, E ,(2) ; n + 1. 

The width sequence for B has n 2-jumps, the first occurring at 

a = 1 (that is, €B(1) = 3).  The location of the second 2-jump 

spots the existence or nonexistence of an oval, since, by 

(6.6), if the second 2-jump occurs at a, then 

!XB, (2) =2+a-l=a + l. 

We know of no counterexample to the assertion that every 

matrix in a class ^ with parameters 

b = v = n + n + 1,  r = k = n 

has its second 2-Jump occurring at or beyond a = n.  One may 

speculate that the existence of "ovals'' could be established 

for all matrices in the class IP•, and hence for planes.  Our 

efforts in this direction have met with no success. 

Observe that the value a = n is txhe location of the first 

2-jump in the minimal width sequence for ^.  We remark that 

it is not true, for a general class ^ with parameters satis- 

fying (2.2), that all matrices in ^ have their second 2-jump 

occurring at or beyond the first 2-Jump in the minimal width 

For a projective plane B' of order n, it is easy to 
verify the inequality iiB,(ß) < (ß-l)n + ß.  If the plane has 

an oval, then 1x^,(2) =n + l or n + 2, according as n is odd 
or even.      0 
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sequence.  Indeed, this assertion is false for classes 

containing complements of Steiner triples, as will be shown by 

an example in Sec. 8. 

7-  THE 1-WIDTHS OF STEINER TRIPLE SYSTEMS 

In this section, we specialize the class -^ to have 

parameters 

(7.1) b = lilzil, v £ 1, 3 mod 6, k = v - 3, r = (v-DJv-^ 

Thus ^   has parameters 

(7-2)    b, v, k' =3,  V = ^, 

and contains Steiner triples on v elements, that is, a 

collection of triples that covers each pair of the v elements 

Just once. 

Each matrix in ^ has v - k - 1 =2 2—Jumps in its width 

sequence. If B' is a Stelner triple system, then B has its 

first 2—Jump at  a = 1, its width sequence having the form 

(7.3)  eB(l) = 3, €B(2) = 4,..., €B(t-2) = t, 

eB(t-l) = t + 2, •.., eB(v-3) = v, 

From the conjugate relation between the sequences 

€B(a) - a, a = 1, 2, •••, v - 3, and eg,(a») - a', a' = 1, 2, 3, 

it follows that 

^,(1) - 1 = (v-3) - (t-2) = v - t - 1, 
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and hence that the Integer t  in (7-3) satisfies 

(7.4) t = v - e.,, (1). B 

Thus the location of the second 2—Jump in (7.5) is determined 

by the 1—width of the triple system B'. 

Theorem 7.1.  The 1—width of a Steiner triple system B' 

on v elements satisfies 

(7.5) ^B.'1'^ 2 

Equality holds if and only if the triple system contains a 

triple subsystem with parameters 

(7.6) (v-l)(v-^)  - 
,   v -, k = 3. r v - 5 

24    '      2 

Before proving Theorem 7«1> we point out that (7.5) is a 

considerable improvement on the lower bound given byT(l) for 
r 

^ , since 

Td) =(f). 

Proof.  Let B'  have 1—width (v+p)/2,  p an odd integer. 

Then we may take  B'  in the form 

(7.7) 

"X5 0 

x2 Yl 

.Xl 
Y2_ 

v+p 
2 

v^ 
2 
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Here X,, contains three I's in each rov;, X« and Yp contain tv/o 

I's in each row, X, and Y, contain one 1 in each row, and 0 

is a zero matrix.  The matrices X. have (v+p)/2 columns. 

Let X. have x. rov/s, 1 = 1, 2, 5.  Then 

x, + x0 + X-, Ivzll 

V—1   V—D (7.8)   2X-L + x2     = ^-  -^ , 

kv + v      - 2v-P-3 . v-P H-X^ + Xg      = —^— • —^— , 

the last equation coming from the inner—product restriction 

on the last (v-p)/2 columns of B'.  The unique solution of 

this system is 

(7.9) 

Xi = (v-p-2)(v-P) 

x = (P+I)(v-P), d 4 
x = v

2-4v+^p ' . 
3     24 

Thus if p < —1, then Xp < 0 and hence we conclude that 

(7.10) p > -1, 

(7.11) ^,(1) > Xzl . 

Suppose that equality holds in (7.11).  Then in the 

configuration (7.7) with p = -1, we have x0 = 0. and X, is i 

triple system on (v—l)/2 elements.  Conversely, suppose the 

given triple system has a subsystem with parameters (7.6). 

Let X-, represent the subconfiguratlon and write 
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(7.12) 

o ' 
B1   = 

V * 

Then X cannot contain a row with two I's.  Nor can X 

contain a row of O's.  For the column sums of X are (v+l)/4 

and 

F + v+1 . v^l = (v-l^v-^) + (v+l)Jv-l) = vlv^ll = b> TT 6 

Hence for the matrix E1  of (7.12) 

(7.15)   ^,(1) = 
v-1 

E 

This oroves the theorem, 

We remark that, given a triple system on v > 5 elements. 

It is always possible to construct a triple system on 

v = 2Y + 1 elements that contains the given one [4j.  A second 

remark concerns the configuration (7.7).  The matrix Y2  is 

the incidence matrix for all pairs on (v—p)/2 elements, and has 

constant column sums  (v—p—2)/2; each column sum of Y-,  is 

(p+l)/2. 

Some examples of triple systems and their 1—widths are 

tabulated below: 

(a)  v = 7«  Unique system, €(l) = 5. 
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(b) v = 9«     Unique  system 

1, 2, 3 
1, 4, 5 2, 4, 9 3, 4, 8 
1, 6, 8 2, 5, 6 3, 5, 7 
1, 7, 9 2, 7, 8 3, 6, 9 

4. 6, 7 
5, 8, S 

with €(1) = 5-  (The set |l, 2,, 3, 4, 5} intersects every triple) 

(c)  v = 13.  Two distinct systems.  Each contains 

1, 2, 3 
1, 4, 5 2, 4, 6 
1, 6, 7 2, 5, 7 4, 3, 8 
1, 8, 9 2, 8,10 4, 7, 9  7, 3,11 
1,10,11 2, 9,12 4,10,13 7,  8,13  8, 5,11  6, 9,11 
1,12,13 2,11,13 4.11.12  7,10,12  8, 6,12  3, 5,12 

In addition, one system contains 3, 6, 10; 3, 9, 13; 

5, 6,13; 5, 9, 10; the other contains 3, 6, 13; 3, 9, 10; 

5, 6, 10; 5, 9, 13. 

The set |1, 2, 3, 4, 5. 6, 7j intersects every triple for 

both systems and hence  e(l) = 7 for both. 

(d)  v = 15.  Eighty distinct systems.  One of these has 1-width 

7, by Theorem 7-1 and the remark following its proof. 

There is another that has 1-width 9.  We describe it as 

follows.  Let 

Z = 

0 0 1 1 0 
0 0 0&1 1 
1 0 0  0 1 
1 1 0  0 0 
0 1 1  0 0 
0 1 0  0 1 
1 0 1  0 0 
0 1 0  1 0 
0 0 1  0 1 
10 0 10 

10  0 0 0 
0  10 0 0 
0 0  1 0  0 
0 0  0 1  0 
0 0  0 0  1 
10  0 0 0 
0  10 0 0 
0  0  1 0  0 
0  0  0 1  0 
0 0  0 0  1 
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and  form  the  55 by 15 matrix 

Z E 0 
0 Z E 
E 0 Z 
III 

Here I Is the 5 by 5 identity.  It is easily checked 

that this is a triple system.  Vie omit a proof that it 

has 1-width 9, except to say that the partitioned form 

we have used to describe it is advantageous in making a 

proof.  It can also be shown that none of the eighty 

systems has 1—width 10 or more. 

It would be interesting to have more information concern- 

ing the variation in 1-width for Steiner triples.  In this 

connection, we note that the triple system just described can 

be generalized.  Take v = 5 mod 6 and set v = 5s, s an odd 

integer.  Let Z be the incidence matrix of all pairs on s 

elements; it is not hard to show that Z may be arranged to 

appear as 

(7.14) 

Js-1 

where each Z. Is the sum of two permutation matrices, and 

J Z1 = J - I, 
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where  J is  the matrix of all  I's.     Let 

I 
I 

(7.15) 

consist of (s-l)/2 Identity matrices of order s.  Then the 

matrix 

(7.16) 

Z E 0 
0 Z E 
E 0 Z 
III 

Is a Stelner triple system on v = 3s elements.  Does the 

system (7.16) have 1-width 2s - 1 = 2v/3 - 1? 

8^ SOME MISCELLANEOUS EXAMPLES 

Perhaps the simplest nontrlvlal class v^ with parameters 

satisfying (2.2) is obtained by taking 

(8.1) b = v>3,  r » k « v — 2 

This class has Just one 2-Jump, and its maximal width sequence 

can be determined explicitly.  It is 

(8.2)  1(1) -2....,?(<J>-l).(f),?(<f)).<^>42 ?(v-2).v, 

the 2-Jump occurring at (r)-     To Prove this, let the Integer 

v > 3 be written In one of the three forms 

(8.3) v - 33, 
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(QA) v • 38 - 1, 

(8.5)    v = 3s - 2, 

where s is an integer.  By Theorem 6.2, it suffices to show, 

for the complementary class ^', that 

(8.6) €(1) = 2s, 2s - 1, 2s - 2, 

according as (8.3), (8.4), or (8.5) holds. 

Assume (8.3).  We first single out a matrix in ^' that 

has 1-width 2s.  Let 

(8-7) 
0   1   1 

'2   " 10  1 
110 

and form 

(8.8) 

D. 
D. 

'D, 

with Dp repeated s times.  The matrix (8.8) is in ^ ' and has 

1—width 2s.  Suppose there were a matrix in ^ ' that had 1— 

width 2s + 1.  Such a matrix must contain an identity submatrix 

I of size 23 + 1, and hence can be written as 

(8.9) 
'♦  x 

I I Y. 



RM-2898 

with I having 2s + 1 rows and columns.  Then the matrix Y 

contains 2s + 1 l's, whereas the matrices X and Y together con- 

tain 2(s—1) = 2s — 2  I's, a contradiction. 

Assume (8.4).  Let JU be the 2 by 2 matrix of I's. 

Then the matrix 

(8.10) 

D. 

D. 

with Do repeated s - 1 times. Is In "^ ' and has 1-wldth 2s - 1. 

An argument similar to the one given above shows that no matrix 

In ^' has 1-wldth 2s. 

If (8.5) holds, the matrix 

(8.11) 

D. 

D. 

D. 

with Dp repeated s - 2 times. Is In ^l and has 1—width 2s - 2. 

As above, no matrix In ^ ' has larger 1—width. 

A matrix In v>< ' can be viewed as the edge—vertex Incidence 

matrix of a multlgraph having degree two at each vertex.  The 

1—width of the matrix Is the minimum number of vertices that 
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touch all the edges.  Roughly speaking, the proof given above 

says that to maximize this number over all such graphs on v 

vertices, form as many triangles (matrices Dp) as possible. 

Our next example is the one mentiori3d at the end of Sec. 6. 

It shows that classes corresponding to complements of Stelner 

triples contain matrices with both 2—jumps occurring before 

the first 2—Jump in the minimal width sequence.  Let the class 

^ ' have parameters 

(8.12) bj3
2^3^HS-l)(3-g)) v=s2_33+^ k.,^r.j3-lM3-g) t 

where s is an integer.  Note that v = 1, 3 rnod 6 according as 

s = 1, 2, 4, 5 mod 6 or s = 0, 3 mod 6, so that ^ ' contains 

Steiner triples on v elements.  For the class -iS,   the first 

2—Jump in the minimal width sequence 6(a) occurs at 

(8.13)   a1 = k' 1 + 
3 

brackets denoting biggest integer. 

Let D, be the incidence matrix of all triples on s elements 

Thus D| is of size s(s—1)(s-2)/6 by s.  Consider the following 

matrix in ^': 

(8.14) B' = 

• 

■^ 

0 

0 J 
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Here  DS  occurs  s - 3   times and  J is  a matrix of 1's  of size 

(s-l)(s-2)/2   by 3-     The matrix  B'   has 

(8.15) Hn,(l)   =  s-2,     nRl(2) = 2(s-2),     n   .(5)  =  s    -5s + 3, 
^B' 

whence it follows from (6.3), (6.4) that the width sequence for 

its complement B has its 2-jumps at 

(8.16) a2 = s - 2  and a^  =  2s  - 5- 

Comparing (8.1c) with (8.I3) shows that, for s > 7, both of 

these occur before a-,. 

Our final example is designed to answer the question: 

Can the difference 1(a) - e(a) for a class ^ be bounded above 

by anything interesting''  It is of course clear that 

(8.17) 1(a) - €Ko) < k' - 1 

for all a.  The above example shows that equality can hold for 

k' = 3-  We now show that equality can hold for k' > 3- 

Let DJ, be the incidence matrix of all k'-tuples of s 

elements, having (*,) rows and s columns, and consider the 

class ^' generated by the matrix 

(8.18) B' = 
t D:. 

<■ 

where  üf,   occurs  t times.     The  class   ^,   has parameters 

(8.19)        b - t(^) ,     v . st,   k',   r«  = (jT_i) , 
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and we  can  satisfy  the   class  inequality  for   ^   by choosing t 

sufficiently  large.     The   first 2-Jump in  the minimal widtn 

sequence  for   \H  occurs  at 

(8.20) a, -[£.]   -[^]. 

We assume  that  k'   divides  s,   so  that  brackets  may be dropped 

in   (8.20). 

The matrix   (8.18)   has 

(8.21)        ^,(6).   '9t'        0<ß<^  -1. 
st, ß =  k1, 

whence 

(8.22) eB(a)  = 
fa  +   (^j)    if a <   (k'-l)(t-l). 

a  + k' If a •>   (1<,-I)(t-1) 

For s  >  k^k'-l),   we  have 

a1 - 1  = |^ - 1  >   (k'-l)(t-l). 

and thus 

(3.25) ^BK"^  = «I - !  + k,• 

Since a,   is   the  position  of  the   first 2-Jump in  e(a), 

(8.24) £(0^1)  = a1. 

Hence equality holds in (8.17) for a » a^ — !• 
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